DER ROADSHOW

Distributed Energy Resources

Distributed Generation Grid Interconnection

CLEMSON UNIVERSITY
DER ROADSHOW
APRIL 2003
JOHN FAYSSOUX, CONSULTANT
ENERGY PROCUREMENT, CONVERSION, & EFFICIENCY

- Discussion Topics
 - Distributed Energy Resources
 - DG Modes of Operation
 - DG Technologies
 - Application Considerations
 - DG Value
 - Changing Grid
 - Changing Codes & Rules
 - Summary

Distributed Energy Resources

- Not a new concept
 - Power Plants are distributed
- Has been around for decades
 - Industrial cogeneration
 - Large power users
- What's new is size, technology, & location
 - 1 kw to 10 MW
 - Distribution circuits

- Emergency
 - Disconnected from grid when the grid is de-energized.
 - Usually a break-before-make transfer switch
 - -NFPA 70
 - NEC 700 Emergency Systems
 - NEC 701 Legally Req'd Standby Systems

- Isolated
 - Disconnected from grid with the grid energized
 - Hourly pricing, interruptible
 - May be
 - » make before break (Synch Check)
 - » or break before make (ATS Blink)
 - -NFPA 70
 - NEC 700 Emergency Systems
 - NEC 705 Interconnected Electrical Power Production Sources
 - -ANSI / IEEE 242 Protective Devices

- Base Loaded
 - Connected to grid with power output
 - Cogeneration system
 - No transfer switch Parallel Swgr
 - May have transfer trip provisions
 - Grid supplies supplemental power
 - -NFPA 70
 - NEC 705 Interconnected Electrical Power Production Sources
 - -ANSI / IEEE 242 Protective Devices

- Peak Shaving
 - Connected to grid
 - Variable power output
 - Make before break ATS Synch Check
 - No transfer switch Parallel Swgr
 - Grid supplies supplemental power
 - -NFPA 70
 - NEC 705 Interconnected Electrical Power Production Sources
 - -ANSI / IEEE 242 Protective Devices

ANSI / IEEE 242 Protective Devices

	Device	Sm	Med	Lge
51 V	Bk-up overcurrent	X	X	X
51 G	Bk-up grd time overcurrent	X	X	X
32	Rev power anti-motoring	P	X	X
40	Rev VAR relay loss of field	P	X	X
87	Diff high speed	P	X	X
87G	Grd Differential			X
46	Negative phase sequence		X	X
49	Stator winding temp			X
64F	Generator field ground			X
60	Voltage balance		X	

Note: Large & Medium may require synch-check or parallel switchgear

Examples: Beckwith M-3401A Protection Relay

Tyco SPR Protection Relay

DG INTERCONNECTION

Distributed Technologies

	Status	Size	CYCLE	Installed	Total Cost
			Eff. (%)	Costs (\$.kw)	(\$/kwh)
Steam	Commercial	50 kw –	12 - 38	400 - 1000	0.03 - 0.06
Turbines	Avail.	200 mw			
Reciprocating	Commercial	20 kw –	28 - 38	500 - 1400	0.06 - 0.09
Engine	Avail.	20 mw			
Combustion	Commercial	500 kw –	21 – 65	600 - 900	0.04 - 0.08
Turbines / CC	Avail.	500 mw			
Microturbines	Commercial	30 kw –	20 - 28	600 - 1000	0.06 - 0.10
	Avail.	300 kw			
Fuel Cells	Commercial	5 kw – 3	36 - 60	1900 - 3500	0.06 - 0.10
	Avail.	mw			
Photovoltaics	Commercial	1 kw +	10 - 20	5000 - 10000	0.10 - 0.20
	Avail.				
Wind Turbines	Commercial	750 kw +	13 MPH	1000 - 1500	0.10 - 0.20
	Avail.		plus		

Note: Total Cost based on 15 % After Tax IRR Wind Includes Land

DER Technology Considerations

- Different operating characteristics
 - Diesels, steam turbines, and gas turbines
 - » Large massive rotors
 - » Demand ride through

DER Technology Considerations

- Microtubine, Fuel Cells, & Solar
 - » Light wieght, high speed
 - » Slow response to demand change

DER Technology Considerations Wind Turbines Require Wind – Ave 13 MPH

DG INTERCONNECTION

VALUE OF DISTRIBUTED GENERATION COST, EFFICIENCY, ENVIRONMENT

Oak Ridge National Lab, Feb. 2002

Today's Electric Grid

Tomorrow's Electric Grid

Issues / Concerns

- Utility Concerns
 - Safety
 - Islanding
 - High Impedance Fault
 - Reliability
 - Stability
 - Integrity
 - Investment Recovery

Issues / Concerns

- DG Industry Concerns
 - Level Playing Field
 - Reduce high cost of interconnection
 - Certification for standard units
 - Standard Interconnect Requirements
 - Standard Interconnect Agreements
 - Access to Wholesale & Retail Markets

Issues / Concerns

- Resolution Activities
 - IEEE P1547
 - New Standard
 - Generators less than 10 MW
 - Addresses Inverter Systems
 - Status Final Process
 - FERC Standard Market Design
 - Interconnection Agreement
 - Size based 10 MW's or less
 - Recognizes UL Certification
 - No More than 10% 15% of circuit capacity

New Standards

- IEEE P1547 Interconnecting Distributed Resources with Electric Power Systems
- UL 1741 Static Inverters and Charge Controllers for Use in Photovoltaic Power systems
 - Will incorporate IEEE P1547 in next revision
- IEEE P1589 Conformance Test Procedures for P1547 (standard)
- IEEE P1608 Application for P1547 Installations (guide)
- IEEE P1614 Guide for Monitoring and Info Exchange (guide)

Related Interconnection Standards

- NFPA 70 National Electrical Code (standard)
- UL 891 and UL 1558 Paralleling Switchgear (standard)
- ANSI / IEEE 242 Protective Devices

FUEL CELL INSTALLATION

TYPICAL CODES

New Standard

Source: DOE Roadshow, Neil Rossmeissl Codes & Standards Program

Summary

- DER not a new concept, new technologies
- Different operation modes different standards
- Multiple technologies, different roles
- Changing electrical grid
- Changing grid rules
- Changing standards
 - FERC SMD Standard Interconnect Agreement
 - Reduces 3,000 utilities, 3,000 Different Agreements
 - IEEE P1547 Inverter Systems (PV, FC, MT)
 - Resolves "Islanding" Issue
 - Provides Certification